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Nomenclature

D Random distribution of x

Si First order sensitivity index

STi Total order sensitivity index

x Stochastic model input

y Stochastic model output

α Percentage outside credible region

1 Introduction

This section begins with a discussion of how it is possible to perform an uncer-
tainty analysis to analyse stochastic model results. Then different methods of
performing sensitivity analysis methods will be surveyed, with an identification
of the most suitable technique to apply for computationally inexpensive models
with relatively low numbers of variables. Finally the uncertainty and sensitivity
analysis techniques will be summarised with a description of a modelling process
which uses both in order to produce useful analysis from a scientific model.

Uncertainty analysis and sensitivity analysis serve similar yet separate tasks.
This difference is described in the following manner; for a given deterministic
model, the results y(x) = [y1(x1), y2(x2), ..., yn(xn)] are functions of the uncer-
tain inputs x = [x1, x2, ..., xnX ]. Uncertainty in x results in an uncertainty in
y. Uncertainty analysis is answering the question of identifying the uncertainty
in y(x) given the uncertainty in x. Sensitivity analysis is the identification of
how individual elements of x contribute towards the uncertainty in y (Helton
et al., 2006; Saltelli et al., 2006, 2008)). Global sensitivity analysis studies the
effects of input variations on the input parameters in the entire allowable range,
with the result they account for the effects of interactions between different
parameters (Baroni and Tarantola, 2014)).

2 Uncertainty analysis

There are two main categories of uncertainty regarding scientific models; type
A and type B. Type A uncertainty, also known as aleatory uncertainty, refers
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to the inherent randomness in the behaviour of a system under study. Type B
uncertainty, also known as epistemic uncertainty, is that derived from a lack of
knowledge about the value to use for a parameter assumed to have a fixed value
for a specific analysis (ISO, 2008)). There are two types of statistical error that
can occur in the analysis of data; type 1 and type 2 (Neyman and Pearson,
1928)). Type 1 error is the incorrect rejection of a true null hypothesis, whereas
type 2 error is the failure to reject a false null hypothesis. It is important
to understand the difference when attempting to model the behaviour of an
engineering artefact of uncertain dimensions. At the exploratory stage it may
be more important to model the behaviour of an artefact across a wider range
of dimensions to see where the global optimums might be. However, if smaller
regions of parameters were studied then it may be possible that Type 2 error
occurs and incomplete analysis might be returned.

There are multiple uncertainty analysis methods which may be applied to-
wards understanding complex models. For models with large computational
costs surrogate models can be used to simulate the performance of the model
(Forrester and Keane, 2009)). They use an experimental design procedure to
minimise the number of model points to be tested (Lucia Faravelli, 1990; Simp-
son et al., 2001; Helton and Davis, 2003b)). Other methods which may be
applied include differential analysis (Jackson, 1995)), variance decomposition
(Saltelli et al., 2000b)) and sampling based techniques (Helton et al., 2006)).

Note that the methods discussed so far are all probabilistic characterisations
of uncertainty. It is possible to use other methods such as fuzzy logic (Ross,
2004)) to explore possibilistic characterisations of uncertainty. The use of pos-
sibilistic techniques rely on successfully identifying how to derive the correct
possibilities using linguistic variables. In fuzzy logic, for example, this involves
identifing the correct membership function to describe the relationship between
a physical parameter and the likelihood of it occuring given a possibility. How-
ever if this membership function is judged incorrectly due to a paucity of in-
formation then it may be possible that Type 2 error is encountered. It may be
possible in future analysis to use possibilistic methods to identify ‘more-likely’
parameter ranges which can then be analysed using probabilistic methods. For
now the use of a deterministic physics based model which is analysed using
probabilistic methods will be discussed. This provides a methodology which
can then be adapted to recieve parameter regions selected using fuzzy logic.

Sampling-based techniques, also known as Monte-Carlo techniques are suit-
able for use with models that are computationally inexpensive that have rela-
tively low numbers of parameters (Helton et al., 2006)). The process for imple-
menting a sampling based methodology for uncertainty analysis is described;

1. Define the distributions D1, D2, ..., DnX that characterise the epistemic
uncertainty in the elements x1, x2, ..., xnX of x.

2. Generation of a sample x1, x2, ..., xnX in consistency with the distributions
D1, D2, ..., DnX .

3. Propagation of the sample through the model to produce a mapping
[xi,y(xi)], i = 1, 2, ..., nS from model inputs to model results.

4. Perform uncertainty analysis

Identifying the sample distributions D that describe the epistemic uncer-
tainty of input parameters to the modelling process is key to the success of the
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analysis process. This stage is usually completed using expert insight or ex-
perimental results (Helton et al., 2006)). However, at the exploratory analysis
stage or for situations such as archaeological investigations with scarce infor-
mation it’s possible to use simple definitions for D1, D2, ..., DnX . This allows
exploration in the variation in the model output (avoiding type 1 error) rather
than for a specific application of the model.

There are multiple methods for generating a sample for each input parame-
ter distribution. Selecting a methodology at this stage involves identifying the
computational cost of running the model, the number of input parameters of
the model and the requirement for accuracy of analysis. Furthermore, the con-
sideration of the purpose of the uncertainty analysis or sensitivity analysis to be
performed also influences the accuracy and the number of model runs required
(Saltelli et al., 2008)).

Three main groups of sampling methods have been identified; importance
sampling, Latin hyper-cubes, and random sampling (Helton et al., 2006)). Im-
portance sampling involves sampling xi independently from a density p(x) given
a probability density q(x). The improvement over random methods is that
through sampling from a density p(x) which is over the region where the suppos-
edly more important results exist, it is possible to get more representative model
results (Owen and Zhou, 2000)). However, the disadvantage of this method is
that the individual sample elements do not have equal weight of occurrence
(Helton et al., 2006)), therefore leading to results which are dependent on the
model and the researcher performing the analysis and leading to Type 2 error.

Latin hypercubes are an example of a space filling technique, where the
sample space is sampled in such a manner to achieve coverage of the main
variations (McKay et al., 1979; Morris, 1991)). Latin hyper-cube sampling is
performed in the following manner in order to generate a sample of size nS from
the distributions D1, D2, ..., DnX associated with the elements x1, x2, ..., xnX of
x. The range of each xj is exhaustively divided into nS disjoint intervals of
equal probability and one value xij is randomly selected from each interval. The
nS values for x1 are randomly paired without replacement with the nS value
for x2 to produce nS pairs. These pairs are then randomly combined without
replacement with the nS values for x3 to produce nS triples. The procedure is
followed until a set of nS nX-tuples xi = [xi1, xi2, ..., xi,nX ], i = 1, 2, ..., nS is
obtained (Helton and Davis, 2003a)). This method is known to be more efficient
than random sampling techniques for analysing models when low order terms
are present (Kucherenko et al., 2015)), and is often chosen for computationally
expensive models. However, random sampling methods allow more accurate
results for computationally inexpensive models.

Random sampling techniques draw samples from the probability distribu-
tions D. These samples can be drawn independently of each other, i.e. in a
crude manner, or, these samples can be drawn in a manner so that they are
dependent on each other. The latter method can be done using Markov Chain
Monte Carlo techniques which use Markov chains to simulate a prior distribu-
tion for a given variable (Brooks, 1998)). At the exploratory stage it’s more
important to study the model and higher-order effects rather than to repre-
sent the distributions of the input parameters exactly. Furthermore, existing
techniques for generating random numbers often have large periods, such as the
mersenne twister with a period of 219937−1 which is implemented in the Numpy
Python package (Stéfan van der Walt and Varoquaux, 2011)). Therefore it is

3



possible to get fairly accurate results using crude random sampling methods.
In order to identify how to conduct an uncertainty analysis the statistical

framework used to analyse the results must be identified. Philosophically there
are two approaches to statistical analysis, the Bayesian approach and the Fre-
quentist approach. The subject of what framework to use has been the subject
of much debate throughout the 20th century, (Jaynes, 1976)) for example. Fre-
quentists understand probabilities as being fundamentally related to frequencies
of events, whereas Bayesians understand probabilities as being fundamentally
related to their own knowledge about an event. The consensus is that it is
possible to frame pertinent questions about a given data set using the language
of Bayesian statistics in a simpler and more accurate manner than frequentist
statistics (VanderPlas, 2014)).

The question of interest is the identification of the probable performance of a
given sailing craft. In the language of Bayesian statistics this is the identification
of a credible region CRy which the measurement result y lies within. If this
credible region contains the result y0 at least 100(1−α)% of the time given any
value of y0 in repeated samples, then CRy is the 100(1 − α)% credible region
for the parameter y (Gelman et al., 2014)).

There are two methods of estimating the bounds of a credible region, ei-
ther identifying a quantile based interval (Hitchcock, 2012a)) or calculating the
bounds of the highest posterior density interval (Hitchcock, 2012b)). If y∗L is the
α/2 posterior quantile for y, and y∗U is the 1−α/2 posterior quantile for y, then
(y∗L, y

∗
U ) is the 100(1 − α)% credible interval for y. However, if the posterior

distribution is skewed then quantile based intervals give incorrect intervals and
it is more appropriate to use the bounds given by the highest posterior density
region. This region is a subset C ∈ y defined by C = y : π(y|x) ≥ k where k
is the largest number such that

∫
y:π(y|x)≥k π(y|x)dy = 1 − α. As the posterior

distribution of sailing craft performance is unknown, it is appropriate to use the
highest posterior density region to provide credible performance estimates.

3 Sensitivity analysis

Sensitivity analysis techniques either focus on local or global approaches. Local
approaches vary each model parameter in turn in order to study the influence
around a single point in the model parameter region. These approaches are of-
ten computationally cheap to run, however do not study the result of interaction
between parameters or the influence of the whole parameter region. However,
global sensitivity analyses allow the influence of parameter variation over the
whole input parameter space on model output space (Saltelli et al., 2000b)).
Local sensitivity analyses are found often in ship science research for two rea-
sons; often the parameter region is well defined, such as in kayak performance
(Jackson, 1995)) and a global analysis might not be required, or the model or
experiment is simply too expensive to run for the whole region. Global sensi-
tivity analyses may be defined using the two properties below (Saltelli et al.,
2000a)), and are particularly suitable for applications where relatively little is
known about the behaviour of the model.

1. The sensitivity analysis incorporates the effect of the range and the shape
of their probability density functions.
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2. The sensitivity estimates of individual factors are evaluated varying all
other factors as well.

The model considered for this research, a sailing craft velocity prediction pro-
gram, is comparatively lightweight to other engineering simulation techniques
and there is a large associated parameter range for the input designs to be con-
sidered, therefore global sensitivity analysis techniques provide the only way of
examining the impact of the archaeological uncertainty of the Polynesian voyag-
ing canoe design. GSA require a large number of model runs in order to attempt
to explore the impact of parameter influence on the model inputs. Identifying
the purpose of a sensitivity analysis is crucial for interpreting its results. Four
main purposes, or settings have been identified for sensitivity analysis methods
(Saltelli et al., 2000b, 2002, 2008)):

1. Factor prioritisation allows the identification of the factor, which, if
known, would lead to the greatest reduction in the variance of the target
output Y .

2. Factor fixing simplifies the model through identifying and fixing non-
influential factors.

3. Variance cutting is used to reduce the output variance below a specified
tolerance. This is where the analyst seeks to reduce the output uncertainty
through acting on the smallest number of factors.

4. Factor mapping is used to study which values of input parameters lead
to model realisations in a given range of the output space.

For the application to an archaeological performance prediction problem the
factor prioritisation and factor fixing settings are the aims of the sensitivity
analysis process. This because the primary aim is to identify what the most
influential parameters are, and thus identify the key archaeological implications
from the modelling process. The factor fixing process is also useful as it would
reduce the number of parameters that would need to be considered in a given
voyaging craft design. When the modelling process requires an identification of
the most significant parameters that influence performance in a specific area,
the factor mapping setting can then be used.

A useful sensitivity analysis technique must possess the properties described
below (Saltelli et al., 2008)). There are a range of sensitivity analysis techniques
which meet these criteria and are also suitable for application to the settings
described above. Table 1 gives a brief overview of the categories of technique
available.

1. Sensitivity measure is independent of the model
2. Capacity to capture the influence of the full range of variation of each

input factor
3. Appreciation of interaction effects among input factors
4. Capacity to tackle groups of input factors

The practice of performing local sensitivity analysis is limited in application
through not investigating the whole model space, which is crucial for this in-
vestigation. The method of Morris (Morris, 1991; Campolongo et al., 2007))
is effective for the ranking of different parameters, however doesn’t provide a
measure of how each parameter contributes towards the total model uncertainty.
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Type Morris Variance Factorial Monte Carlo Local SA

Model independent? Yes Yes Yes Yes Yes
Sample source Levels Distributions Levels Distributions Levels
No. factors 20 - 100 <20 >100 <20 <100
Factor range Global Global Global Global Local
Multi-factor variation Yes Yes Yes Yes No
Correlated factors? No No Yes Yes No
Cost (for k factors)? 10 (k+1) 500(k+2) k ->2k 500 + 1 2(k + 1)
Estimated CPU 1 day 11 days 3 hours ≈ 2 days 1 hour

Table 1: Overview of sensitivity analysis techniques available, (Usher, 2016))
adapted from Saltelli et al. (2008)). Time calculations computed assuming 5
minutes run time per simulation and 30 factors.

Fractional factorial methods (Saltelli et al., 2008, p. 71)) are able to cope with
non-linear models, however don’t process input factors as belonging to distribu-
tions and lack accuracy compared to variance based techniques. Variance based
techniques are able to quantify the contribution each parameter makes to the
uncertainty in a model output and they are able to calculate the impact each
factor has in co-ordination with other factors. This makes them suitable for
application to understand how different design parameters contribute towards
the uncertainty in a performance estimate.

Variance based techniques propose that model uncertainty can be measured
using its variance. They use this measurement to proportion how uncertainty
in input parameters have impacted it. The variance based technique identified
for use is named the “Sobol Sensitivity Analysis” (Sobol, 2001; Saltelli, 2002;
Saltelli et al., 2010)) and is chosen for its wide application to many different
problems (Saltelli et al., 2008)).

The first variance based technique was the Fourier amplitude sensitivity test
(FAST) described in (Cukier et al., 1973)) which introduced conditional vari-
ances for a sensitivity analysis based on first-order effects. A methodology for
decomposing the output of a function into contributions of different dimensions
was introduced by (Sobol, 1993)), using Mont Carlo simulations to generate
samples. This method allowed the computation of first order and higher order
indices. Progress in this methodology was described further in (Sobol, 2001)).
In order to reduce the computational cost of performing the sensitivity analy-
sis to widen application, (Saltelli, 2002)) introduces methods which reduce the
cost of computing the first order and total order sensitivity indices. This work
demonstrated that Sobols method outperforms FAST, with the ability to cal-
culate an extra parameter which can identify non influential parameters for no
extra computational cost. Sobols method was also showed to be successful for
application to non-linear and non-additive physical models. Sobols method was
developed further in Saltelli et al. (2010)) with the identification of more effi-
cient methods of generating samples which cover the model region and methods
of calculating the sensitivity indices. The use of Sobol quasi-random sequences,
which generate samples of X1, X2, ..., XR as uniformly as possible over the unit
hyper cube ω, using radial sampling was identified as being the most effective.
Quasi-random sequences generate samples based on knowledge of existing sam-
ples which allows more efficient sets of samples to be generated.

There are two key measures of the influence a generic factor Xi has on the
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results of a model, Si and STi (Homma and Saltelli, 1996)). Equations (1) (2)
describe the calculation of the first order sensitivity measure and the total order
sensitivity measure. It’s noted that sensitivity analysis includes examining the
influence a parameter has interacting with other parameters as well as on its
own.

X∼i
is the matrix of all factors but Xi, thus the inner expectation operator

in Equation 1 is that the mean of Y is taken over all possible values of Xi

while keeping Xi fixed. X∼i denotes the matrix of all factors but Xi. Si is a
normalised index as VXi(XX∼i

(Y |Xi)) varies between 0 and V (Y ). STi measures
the total effect, i.e. first and higher order interactions of the factor Xi. It can be
calculated through subtracting the first order effect of X∼i, VX∼i

(EXi
(Y |X∼i))

from the variance V (Y ) which gives all the contribution of the terms in the
variance decomposition which do include Xi.

Si =
VXi(XX∼i

(Y |Xi))

V (Y )
(1)

STi =
X(X∼i(VXi(Y |X∼i))

V (Y )
= 1− VX∼i

(EXi
(Y |X∼i))

V (Y )
(2)

One methodology which is able to combine uncertainty and sensitivity anayl-
sis techniques within a single framework is described in Baroni and Tarantola
(2014)) as the “General Probabilistic Framework for uncertainty and global sen-
sitivity of deterministic models”. This framework, shown in Figure 1, is able
to cope with non-scalar sources of uncertainty without any constraint and can
be applied to models of unknown linearity, monotonicity and additivity. It has
been successfully applied to understanding environmental models. It’s possible
to use this diagram to show how the uncertainty and sensitivity analysis be-
ing performed in this report fit into the process of evaluating Polynesian canoe
performance.

Glossary

sampling based Sampling based techniques, also known as Monte Carlo tech-
niques (Metropolis and Ulam, 1949)), involve the exploration of a mapping
between input and output parameters through the generation of random
samples for input into the model.. 2

surrogate Surrogate models aim to simulate the results from computation-
ally expensive engineering methods through creating models from sampled
points of the response of the method given a series of sample points. 2
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